Proteasome inhibition activates epidermal growth factor receptor (EGFR) and EGFR-independent mitogenic kinase signaling pathways in pancreatic cancer cells.
نویسندگان
چکیده
PURPOSE In the current study, we investigate the activation of antiapoptotic signaling pathways in response to proteasome inhibitor treatment in pancreatic cancer and evaluate the use of concomitant inhibition of these pathways to augment proteasome inhibitor treatment responses. EXPERIMENTAL DESIGN Pancreatic cancer cell lines and mouse flank xenografts were treated with proteasome inhibitor alone or in combination with chemotherapeutic compounds (gemcitabine, erlotinib, and bevacizumab), induction of apoptosis and effects on tumor growth were assessed. The effect of bortezomib (a first-generation proteasome inhibitor) and NPI-0052 (a second-generation proteasome inhibitor) treatment on key pancreatic mitogenic and antiapoptotic pathways [epidermal growth factor receptor, extracellular signal-regulated kinase, and phosphoinositide-3-kinase (PI3K)/AKT] was determined and the ability of inhibitors of these pathways to enhance the effects of proteasome inhibition was assessed in vitro and in vivo. RESULTS Our data showed that proteasome inhibitor treatment activates antiapoptotic and mitogenic signaling pathways (epidermal growth factor receptor, extracellular signal-regulated kinase, c-Jun-NH2-kinase, and PI3K/AKT) in pancreatic cancer. Additionally, we found that activation of these pathways impairs tumor response to proteasome inhibitor treatment and inhibition of the c-Jun-NH2-kinase and PI3K/AKT pathways increases the antitumor effects of proteasome inhibitor treatment. CONCLUSION These preclinical studies suggest that targeting proteasome inhibitor-induced antiapoptotic signaling pathways in combination with proteasome inhibition may augment treatment response in highly resistant solid organ malignancies. Further evaluation of these novel treatment combinations in clinical trials is warranted.
منابع مشابه
Altered Expression of Epidermal Growth Factor Receptor (EGFR) in Glioma
EGFR is a key molecule in cancer cells. EGFR signaling was shown to promote tumor cell proliferation and survival, invasion and angiogenesis and mediate resistance to treatment, including ionizing radiation in preclinical models. We extracted proteins from astrocytoma (III and IV) oligodendroglioma(IV) tumors and normal brain tissues and then evaluated the protein purity by Bradford test ...
متن کاملActivating stress-activated protein kinase-mediated cell death and inhibiting epidermal growth factor receptor signaling: a promising therapeutic strategy for prostate cancer.
Epidermal growth factor receptor (EGFR) activation is an important event that regulates mitogenic signaling, such as the Raf, mitogen-activated protein kinase (MAPK), and extracellular signal-regulated kinase 1/2 cascades. EGFR activation has been implicated in the transition of prostate cancer from androgen dependence to independence. Therefore, inhibition of EGFR may effectively suppress pros...
متن کاملExpression of Epidermal Growth Factor Receptor and the association with Demographic and Prognostic Factors in Patients with Non-small Cell Lung Cancer
Introduction: Growth, proliferation, survival, and differentiation are the prominent characteristics of cells, which are affected by cancer. Epidermal growth factor receptor (EGFR) plays a pivotal role in the effective control of these features. Given the significance of EGFR signaling pathway in non-small cell lung cancer (NSCLC), EGFR expression is influential on these cell characteristics. I...
متن کاملBlocked by a Truncated Epidermal Growth Factor Receptor Multiple Mitogenic Pathways in Pancreatic Cancer Cells Are
The epidermal growth factor (EGF) receptor (EGFR) family consists of four transmembrane tyrosine kinases that undergo homodimerization and heterodimerization. Pancreatic cancers overexpress these receptors. To examine the effects of EGFR blockade on pancreatic cancer cell mitogenesis in relation to activation of specific signaling pathways, four pancreatic cancer cell lines were infected with a...
متن کاملUncoupling between epidermal growth factor receptor and downstream signals defines resistance to the antiproliferative effect of Gefitinib in bladder cancer cells.
Activation of the epidermal growth factor receptor (EGFR) and downstream signaling pathways, such as phosphatidylinositol-3 kinase/Akt and Ras/mitogen-activated protein kinase (MAPK), have been implicated in causing resistance to EGFR-targeted therapy in solid tumors, including the urogenital tumors. To investigate the mechanism of resistance to EGFR inhibition in bladder cancer, we compared EG...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 14 16 شماره
صفحات -
تاریخ انتشار 2008